
.

The lem n
cookbook

John McCrae1, Guadalupe Aguado-de-Cea2, Paul Buitelaar3,
Philipp Cimiano1,Thierry Declerck4, Asunción Gómez Pérez2,
Jorge Gracia2, Laura Hollink5, Elena Montiel-Ponsoda2,

Dennis Spohr1 and Tobias Wunner3

1 CITEC, Universität Bielefeld
2 Universidad Politécnica de Madrid

3 DERI, National University of Ireland, Galway
4 Deutsches Forschungzentrum für künstliche Intelligenz

5 Delft University of Technology

m nnet
««

«

«

«
«««

«

«

«
«

1

Contents
1 The lemon core 3
1.1 Main elements . 3
1.2 Canonical forms and preferred lexicalizations 5

2 Modules 9
2.1 Linguistic Description Module . 10

2.1.1 Linguistic properties . 10
2.1.2 Describing phonetics . 11
2.1.3 Topics and contexts . 12

2.2 Variation Module . 14
2.2.1 Lexicosemantic relationships . 14
2.2.2 Lexical variants . 15
2.2.3 Subphrases as variation . 16
2.2.4 Form variants . 17
2.2.5 Translation as variation . 17

2.3 Phrase Structure Module . 20
2.3.1 Decomposition of terms . 20
2.3.2 Phrase structures . 21
2.3.3 Dependency relations . 24
2.3.4 Noun phrase chunks . 25

2.4 Syntax and Mapping Module . 27
2.4.1 Frames . 27
2.4.2 Phrase structure and frames . 29
2.4.3 Predicate mapping . 30
2.4.4 Conditions . 31
2.4.5 Mapping to more complex representations 32
2.4.6 Mapping adjectives . 33
2.4.7 Correspondence . 36

2.5 Morphology Module . 38
2.5.1 Inflection . 39
2.5.2 Agglutination . 42

3 Advanced Issues 45
3.1 Annotations and Global Restrictions . 45

3.1.1 Annotation schemes . 45
3.1.2 Global Information . 46

3.2 The semantics of the lemon model . 48
3.2.1 Formal model of lemon senses . 48

4 Relation to existing systems 51
4.1 LMF . 51
4.2 SKOS . 52
4.3 TBX . 53

A FAQ 54

B LMF comparison 58

C lemon model diagram 60

2

Introduction
lemon is a model developed in the Monnet project to be a standard for sharing lexical
information on the semantic web. lemon draws heavily from earlier work of the Monnet
members, in particular from LexInfo (Cimiano et al., 2011), LIR (Montiel-Ponsoda et al.,
2008) and LMF (Francopoulo et al., 2006). lemon in contrast to these systems aims to
be

• Concise: As few classes and definitions as needed.

• Descriptive not prescriptive: lemon uses external sources for the majority of its
definitions. As such the lemon system can be extended in different ways to han-
dle different purposes, i.e., terminological variation, morpho-syntactic description,
translation memory exchange.

• Modular: lemon divides into a number of modules, meaning it is not necessary to
implement the entire model to create a functional lexicon.

• RDF-native: In order to enable sharing on the semantic web, and for interface
with tools lemon is based on RDF. This also allows for greater representation of
linking between different sections of the lexicon.

1 The lemon core

LexicalEntry
Lexicon

LexicalForm

LexicalSense

Ontology

writtenRep:String

form

senseisSenseOf

reference

isReferenceOf

entry

language:String

canonicalForm

otherForm

abstractForm

prefRef

altRef

hiddenRef

Word

Phrase

Part

1.1 Main elements
The lemon coremodule is intended to have a similar expressive power to that of SKOS (Miles
and Bechhofer, 2009), while providing distinctions that allow for more powerful linguis-

3

tic modeling. For example the simplest version of a lemon entry is as follows:1

@base <http://www.example.org/lexicon>
@prefix ontology: <http://www.example.org/ontology#>
@prefix lemon: <http://www.monnetproject.eu/lemon#>

:myLexicon a lemon:Lexicon ;
lemon:language "en" ;
lemon:entry :animal .

:animal a lemon:LexicalEntry ;
lemon:form [lemon:writtenRep "animal"@en] ;
lemon:sense [lemon:reference ontology:animal] .

Example 1

Please note, for the course of this book we will use Turtle notation2 as it is the quick-
est and most legible way to write lemon (and RDF in general). Furthermore we will
mostly omit the type declarations (e.g., myLexicon is a lemon:Lexicon), as they are gen-
erally not necessary and can in all cases be inferred from the RDF Schema document.
Also we shall assume in all cases that the prefixes lemon, ontology and the base pre-
fix are as in the first example. For the sake of completion we will present the above
example in RDF/XML.

<?xml version="1.0"?>

<rdf:RDF xmlns="http://www.example.org/lexicon#"
xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
xmlns:lemon="http://www.monnetproject.eu/lemon#">

<lemon:Lexicon rdf:about="myLexicon" lemon:language="en">
<lemon:entry>
<lemon:LexicalEntry rdf:about="animal">
<lemon:form rdf:parseType="Resource">

<lemon:writtenRep xml:lang="en">animal</lemon:writtenRep>
</lemon:form>
<lemon:sense rdf:parseType="Resource">
<lemon:reference rdf:resource="http://www.example.org/ontology#animal"/>
</lemon:sense>

</lemon:LexicalEntry>
</lemon:entry>

</lemon:Lexicon>
</rdf:RDF>

Example 2

This example defines the following entities

1. Lexicon: This is the lexicon containing all elements in the lexicon. This approx-
imately corresponds to a SKOS scheme. Each lexicon is marked with a language
in the form of an ISO 639 tag.

1We include a language tag on the literals even though it can be inferred, for stylistic reasons
2http://www.w3.org/TeamSubmission/turtle/

4

http://www.w3.org/TeamSubmission/turtle/

2. Lexical Entry: This represents the given lexical entry.

3. Lexical Sense: Represents the relationship between the lexical entry and the
ontology entity.

4. Reference: The reference to the resource that can be described by this lexical
entry. In the examples above the reference is in a separate ontology, with its own
name space.

5. Form: A surface realisation of a given lexical entry, typically a written represen-
tation.

A second example showing two lexical entries referring to the same ontology entity
is as follows:

:myLexicon lemon:entry :animal , :creature ;
lemon:language "en" .

:animal lemon:form [lemon:writtenRep "animal"@en] ;
lemon:sense [lemon:reference ontology:animal] .

:creature lemon:form [lemon:writtenRep "creature"@en] ;
lemon:sense [lemon:reference ontology:animal] .

Example 3

This indicates that “animal” and “creature” can refer to the same ontology concept
and as such they can be considered to be “synonymous” in a sense. The semantics of
the lemon model are further discussed in section 3.2.

1.2 Canonical forms and preferred lexicalizations
lemon allows syntactic variants to be differentiated from preferred forms by sub-properties
of form.

:animal lemon:canonicalForm [lemon:writtenRep "animal"@en] ;
lemon:otherForm [lemon:writtenRep "animals"@en] .

Example 4

This allows lemon to differentiate between different forms of a word and different
words. For example consider we have two labels for an ontology entity, “animal” and
“creature”. This is modeled in lemon as follows:

:animal lemon:canonicalForm [lemon:writtenRep "animal"@en] ;
lemon:otherForm [lemon:writtenRep "animals"@en] ;
lemon:sense [lemon:reference ontology:animal] .

:creature lemon:canonicalForm [lemon:writtenRep "creature"@en] ;
lemon:otherForm [lemon:writtenRep "creatures"@en] ;
lemon:sense [lemon:reference ontology:animal] .

Example 5

5

It is also possible to state the lexicon-ontology relationship in the reverse direction
because reference and sense have inverse properties isReferenceOf and isSenseOf. This
allows example 5 to be stated as follows

ontology:animal
lemon:isReferenceOf [

lemon:isSenseOf [
lemon:canonicalForm [lemon:writtenRep "animal"@en] ;
lemon:otherForm [lemon:writtenRep "animals"@en]

]
] ;
lemon:isReferenceOf [

lemon:isSenseOf [
lemon:canonicalForm [lemon:writtenRep "creature"@en] ;
lemon:otherForm [lemon:writtenRep "creatures"@en]

]
] .

Example 6

It is also possible to state the lexicon without any senses or references and then
introduce an ontology mapping layer by creating links such as

:animal_sense lemon:isSenseOf :animal ;
lemon:reference ontology:animal .

Example 7

In lemon we assume that each lexical entry is not semantically disambiguated, and
that the reference provides the semantics of the term. We introduce sense to represent
those occurrences when the lexical entry is used with the given meaning. As such it
is assumed that “feline” and “cat” would not share a sense, even though they can be
considered as synonyms. Similarly “he is a cool cat” and “cats are mammals” are as-
sumed to have the same lexical entry as they exhibit the same morphological/syntactic
behaviors. This is summarized in the following diagram

cat

cats

feline a cool “cat”

Ontology
Element

Lexical
Element

Sense

Forms

One of the most important aspects of lemon is that senses should be unique to a
given lexical entry/ontology reference pair, this means that “creature” and “animal”,
should not refer to the same sense entity, but can be related using the equivalent
property. If two lexical entries do share a sense, then it is assumed that they are lexically
equivalent, which may be appropriate for example for an initialism or acronym and its
full form. Similarly it should be understood that if a sense has two references then
these references are equivalent (for example by OWL’s equivalentClass) property. For
more details of this see sections ??, 3.2 and 4.1.
In lemon for each lexically different element, a different lexical entry and sense is

used. This means that both lexical entries are considered possible representations of
the ontology entity.

6

Also like SKOS, we allow the inclusion of partial terms, which we refer to as “ab-
stract”, this is useful for representing stems, affices and other morphological units.
These are implemented by three sub-properties of form can also be used to describe
linguistically relevant differences.

• canonicalForm: The standard (“dictionary”) citation form the entry.

• otherForm: A morphological variant of the words.

• abstractForm: A stem or other non-realizable morpheme, or other non-realizable
forms.

As lemon defines a form as being invariant across different orthographies, different
spellings of a word are represented by deriving a sub-property of representation. Here
it is important to include the xml:lang tag to indicate the particular usage of a given
term. For example the representation of “color” in US English spelling and “colour” in
British English spelling.

:color lemon:canonicalForm [
lemon:writtenRep "color"@en-us ;
lemon:writtenRep "colour"@en-gb] .

Example 8

It is also important to note that SKOS’s prefLabel, altLabel and hiddenLabel do not
distinguish between syntactic preference (like canonicalForm etc) and pragmatic pref-
erence, that is whether the term is preferred for terminological reasons. To cover this
pragmatic preference lemon has three sub-properties of isReferenceOf, that cover this,
namely, prefRef, altRef, hiddenRef. prefRef represents the preferred term of an ontol-
ogy reference (there should be only one such entry), hiddenRef represents a term that
is not used for various reason (for example it is antiquated) and altRef represents any
other term. For example the following shows “tuberculosis”, with an alternative “TB”
and an antiquated term “phthisis”.

ontology:tuberculosis
lemon:prefRef [

lemon:isSenseOf [:tuberculosis]
] ;
lemon:altRef [

lemon:isSenseOf [:tb]
] ;
lemon:hiddenRef [

lemon:isSenseOf [:phthisis]
] .

Example 9

Between the sub-properties of form and isReferenceOfwe canmore precisely capture
the same semantics as SKOS’s prefLabel, altLabel and hiddenLabel. The conversion is
as follows:

7

Canonical Form Other Form Abstract Form
Preferred Reference of prefLabel altLabel hiddenLabel
Alternative Reference of altLabel altLabel hiddenLabel
Hidden Reference of hiddenLabel hiddenLabel hiddenLabel

Summary of vocabulary introduced in this section
lemon element Description
entry States that a lexical entry is in a given lexicon
form States a realization of a lexical entry
↳canonicalForm Gives the dictionary form of a lexical entry
↳otherForm Gives an alternative form of a lexical entry (In-

flectional variant)
↳abstractForm Gives a non-display form of a lexical entry

(Non-realizable variant)
language The language of a lexicon, specified as an ISO

639 code.
sense Specifies the lexical entry a sense refers to
reference Specifies a connection from a sense to a re-

source
isReferenceOf Specifies the sense referred to by an ontology

reference. Inverse of reference
↳prefSem Indicates the preferred entry and sense for an

ontology reference.
↳altSem Indicates an non-preferred but valid entry and

sense for an ontology reference.
↳hiddenSem Indicates a generally incorrect entry and

sense for an ontology reference.
isSenseOf Indicates the lexical entry for a given sense.

Inverse of sense.
representation Specifies a specific representation of a form
↳writtenRep Specifies a specific written representation of

a form
Word Indicates the lexical entry is a word
Phrase Indicates the lexical entry is composed of mul-

tiple words
Part Indicates the lexical entry is a part of a word

(e.g., an affix)

8

2 Modules

Core

Variation

Syntax

and

Mapping

Phrase

Structure

Linguistic

Description

Morphology

depends may use

may use

The core of lemon represents a sufficient model for representing a simple lexicon,
however for most lexica more sophisticated description is required. This is provided by
the following modules:

• Linguistic Description: This allows linguistic properties, that are commonly
found in dictionaries, may be added to elements in the lexicon

• Variation: This allows relationships between different elements of a lexicon to be
described

• Phrase structure: This describes the representation of multiple word expres-
sions within lexica

• Syntax and mapping: This concerns the representation of syntactic frames and
mapping these frames to logical predicates in an ontology

• Morphology: This module provides compact mapping for a inflected and agglu-
tinative forms of entries.

9

2.1 Linguistic Description Module

Lemon

Element

property

isocat:partOfSpeech

isocat:aspect

isocat:case

isocat:degree

isocat:grammaticalGender

isocat:grammaticalNumber

isocat:grammaticalTense

isocat:voice

isocat:termProvenance

isocat:termType

...

ProperNounCommonNoun

NounAdjective

PartOfSpeech Gender

Thing

...

...

...

Linguistic Description Ontology

Lexicon
Lexical

Entry

Lexical

Sense

Lexical

Topic

Lexical

Context

value:String

topictopiccontext

2.1.1 Linguistic properties

One of the key challenges that lemon attempts to solve is the attachment of linguistic
information to an ontology, which is essential to providing linguistic annotations to the
text. This is achieved by using a linguistic taxonomy also known as a linguistic descrip-
tion ontology or data category registry (Romary, 2010). Examples of these resources
include the GOLD ontology or the ISOcat data category registry. For example, indicat-
ing that “cat” has a singular canonical form “cat” and a plural form “cats” can be done
as follows.3

:cat lemon:canonicalForm [lemon:writtenRep "cat"@en ;
lemon:property isocat:singular] .

:cat lemon:otherForm [lemon:writtenRep "cats"@en ;
lemon:property isocat:plural] .

Example 10

In practice it is neither feasible nor desirable to impose a complete set of all possible
annotations, thus lemon does not attempt to do so, and is intended to be used with a
source of linguistic categories. Also lemon is used to define the structure and relations
of the lexicon, and properties from data categories are introduced by asserting them as
sub-properties of existing lemon properties (in particular lemon:property). For example
we will now show an example that marks “ICBM” as a noun and an initialism, using
sub-properties of lemon’s property4

@prefix rdfs: <"http://www.w3.org/2000/01/rdf-schema#">

:ICBM isocat:partOfSpeech isocat:noun ;
3We base examples on ISOcat and use the “identifier” property as the basis of the URI, so we have the

readable description isocat:noun instead of isocat:DC-1333
4We introduce the RDFS name space with its usual form.

10

isocat:termType isocat:initialism .

isocat:partOfSpeech rdfs:subPropertyOf lemon:property .
isocat:termType rdfs:subPropertyOf lemon:property .

Example 11

These sub-property declarations only need to be made once per lexicon. An alter-
native is to use a controlled vocabulary for lemon, such as LexInfo 25 which defines a
practical set of data categories for general NLP tasks.
It is of course possible to define a lexical entry or form as having several linguistic

properties. For example, in many cases we might wish to introduce this set of data
categories again from a source such as ISOcat or GOLD. The use of multiple properties
makes it much simpler for applications to query different properties.

:eat lemon:otherForm [lemon:writtenRep "eats"@en ;
isocat:person isocat:thirdPerson ;
isocat:grammaticalNumber isocat:singular ;
isocat:tense isocat:present] .

isocat:person rdfs:subPropertyOf lemon:property .
isocat:grammaticalNumber rdfs:subPropertyOf lemon:property .
isocat:tense rdfs:subPropertyOf lemon:property .

Example 12

It may also be used to define the linguistic properties of forms, e.g. to indicate
whether they are roots or stems etc. For example, the Spanish verb “pescar” has
alternative stems “pesc-” and “pesqu-” that may be useful for generating inflectional
variants.

:pescar lemon:abstractForm
[lemon:writtenRep "pesc"@es ;
isocat:morphologicalUnit isocat:stem] ;

lemon:abstractForm
[lemon:writtenRep "pesqu"@es ;
isocat:morphologicalUnit isocat:stem] .

Example 13

Morphology can also be partly handled by assigning the morphological pattern as
a type of linguistic annotation. For example the Latin verb “amare” may be stated to
have the “first conjugation” morphological pattern as such.

:amare isocat:morphologicalPattern :first_conjugation .

Example 14

This means that it is possible to use this modelling to avoid stating all inflected forms
of a word. The implication for implementation however should still be that stated forms
override forms generated from a morphological pattern. This is useful as for example
the verb “speak” has a regular third person singular present form “speaks” but irregular
simple past and past participle forms “spoke” and “spoken”.

2.1.2 Describing phonetics

For representing transliterations and pronounciations, extra subproperties of representation
(the super-property of writtenRep) can be introduced. For example wemodel the Japanese
word “日本語”, which can be transliterated to either “にほんご” in the phonetic Japanese
script Hiragana or “nihongo” in the Latin alphabet

5http://www.lexinfo.net/ontology/2.0/lexinfo

11

:nihongo lemon:canonicalForm [
lemon:writtenRep "日本語"@ja-Jpan ;

isocat:transliteration "にほんご"@ja-Hira ;
isocat:transliteration "nihongo"@ja-Latn] .

isocat:transliteration rdfs:subPropertyOf lemon:representation .

Example 15

This sub-property relation also then allows us to develop specific versions of translit-
eration, for example “神保町” is transliterated as “jimbōchō” in the Hepburn romaniza-
tion scheme (the most widely used method for transliterating Japanese) and “zinbôtyô”
in the Kunrei-shiki (ISO 3602) romanization scheme. This could be represented as fol-
lows.

:jimbocho lemon:canonicalForm [
lemon:writtenRep "神保町"@ja-Jpan ,

:hepburnTransliteration "jimbōchō"@ja-Latn ;
:kunreiTransliteration "zinbôtyô"@ja-Latn] .

:hepburnTransliteration rdfs:subPropertyOf isocat:transliteration .
:kunreiTransliteration rdfs:subPropertyOf isocat:transliteration .

Example 16

2.1.3 Topics and contexts

As the size of a lemon lexicon grows it is necessary to manage and organize it according
to some principles. One of the first steps to this is the lexicon object, which allows
vocabulary to be grouped by creating multiple lexicon objects. This is similar to the role
of schemes in SKOS, which allow different topics to be grouped. As such lemon provides
topic to indicate the topic that is shared between all lexical entries. For example the
following shows two lexicons one for animals and one for veterinary anatomy

:animal_lexicon lemon:topic :animals ;
lemon:entry :cat , :mongoose , :seahorse .

:anatomy_lexicon lemon:topic :veterinary_anatomy ;
lemon:entry :lung , :fin , :swim_bladder .

Example 17

Note that the object of topic is again a URI value, which presupposes a set of defined
topics (i.e., a topic ontology). It is often the case that this does not exist or for some
reason it is better to represent topics with literal strings. In such cases, lemon’s value
property can be used. Hence the above example can be rewritten as:

:animal_lexicon lemon:topic [lemon:value "animals"] ;
lemon:entry :cat , :mongoose , :seahorse .

:anatomy_lexicon lemon:topic [lemon:value "veterinary anatomy"] ;
lemon:entry :lung , :fin , :swim_bladder .

Example 18

It is not recommended that this pattern is used if topics are reused across multiple
lexicon objects, as it is more difficult to group lexicons on the same topic and using a
string may cause spelling issues.
The lemon topic can also be applied to lexical entries to give a term level description

of the topic of an entry. Of course, as with all RDF systems, many topics can be attached
to a single entry. For example

12

:cat lemon:topic :domestic_animals , :cosmopolitan_species , :felidae_family .

Example 19

It is important not to confuse the topic of a lexical entry with the context of its senses.
Another important feature lemon has for terminological management is the ability to

add definitions with the definition property. For this the value property must always
be used to state the value of the definition. For example

:cat lemon:sense [
lemon:reference ontology:cat ;
lemon:definition [
lemon:value "The cat is a small domesticated carnivorous animal"@en

]
] .

Example 20

These definitions are generally intended to be used primarily in terminology man-
agement rather than for NLP systems.
In addition a particular meaning of a term may be described with a context, which

refers to pragmatic/discourse restrictions on the mapping that may be implied by either
the linguistic context. An example of a pragmatic context is given here by the usage
of the term “cat” in general discourse and “Felis Catus” in scientific discourse.

:felis_catus lemon:sense [lemon:context isocat:technicalRegister ;
lemon:reference ontology:Cat] .

:cat lemon:sense [lemon:context isocat:neutralRegister ;
lemon:reference ontology:Cat] .

Example 21

In addition contexts are useful for indicating temporal or geographic usage, and this
can be done by introducing subproperties to indicate these values. For example we
may indicate that the term “blog” has been used since 1998 as follows:

:blog lemon:canonicalForm [
lemon:writtenRep "blog"@en]

lemon:sense [
lemon:reference foaf:weblog ;
:usedSince [lemon:value "1998"^^xsd:gYear]].

:usedSince rdfs:subPropertyOf lemon:context .

Example 22

Summary of vocabulary introduced in this section

Property Description
property Provides a linguistic annotation. If the subject of this property is a lexical entry

this refers to all instances of the lexical entry. If the subject is a form, then it de-
scribes the inflection of the given form. If the subject is a component it describes
the morphological property of this component within a multi-word expression.

topic Indicates the topic of a lexicon or lexical entry.
context Indicates the context in which a given lexical sense is used

13

2.2 Variation Module

Lexical

 Entry

LexicalForm

Lexical

Sense

writtenRep:String

form

lexicalVariant

senseRelation sense

formVariant

pluralFormOf

...

abbreviationFor

fullFormFor

...

equivalent

broader

narrower

incompatible

translationOf

closeSense

related

meronym

...

antonym

...

hypernym

...

hyponym

...

Term Variation

 Ontology

The variation module is used to describe relationships between objects in a lemon
lexicon. This is done primarily by three relations senseRelation, lexicalVariant and
formVariant, which describe relationships between senses, entries and forms respec-
tively.

2.2.1 Lexicosemantic relationships

It is possible to relate the sense objects using the predicate lemon:senseRelation. This
has the following sub-properties defined in lemon:

• equivalent

• incompatible

• broader

• narrower6

These can be used to state the similarity of the terms “animal” and “creature” as
follows

6Like SKOS, broader and narrower are not transitive

14

:animal lemon:canonicalForm [lemon:writtenRep "animal"@en] ;
lemon:sense :animal_sense .

:animal_sense lemon:reference ontology:animal ;
lemon:equivalent :creature_sense .

:creature lemon:canonicalForm [lemon:writtenRep "creature"@en] ;
lemon:sense :creature_sense .

:creature_sense lemon:reference ontology:animal ;
lemon:equivalent :animal_sense .

Example 23

For a further example of the usefulness of these similarities consider the case of
the French words “rivière” and “fleuve”, these refer to rivers that flow into other rivers
and the sea respectively. As such this distinction can be modeled by the following
sub-graph.

:fleuve lemon:sense :fleuve_sense .
:riviere lemon:sense :riviere_sense .
:river lemon:sense :river_sense .

:fleuve_sense lemon:incompatible :riviere_sense .

:riviere_sense lemon:incompatible :fleuve_sense .

:river_sense lemon:narrower :riviere_sense ,
:fleuve_sense .

Example 24

2.2.2 Lexical variants

Another important factor of lemon is the ability to model the differences between var-
ious words and forms of a word. This is performed by the properties lexicalVariant,
formVariant and senseRelation. Again here we handle the large number of potential
annotations by referring to a data category registry to define these relations.7

7Note, we make the technical distinction here between an “initialism” (e.g., USA) and a “acronym” (e.g.,
NASA)

15

:hiv lemon:canonicalForm [lemon:writtenRep "HIV"@en] ;
isocat:termType isocat:initialism ;
isocat:initialismFor :human_immunodeficiency_virus .

:human_immunodeficiency_virus
lemon:canonicalForm [lemon:writtenRep "Human immunodeficiency virus"@en] ;
isocat:termType isocat:fullForm ;
isocat:fullFormFor :hiv .

isocat:initialismFor rdfs:subPropertyOf lemon:lexicalVariant .
isocat:fullFormFor rdfs:subPropertyOf lemon:lexicalVariant .

Example 25

It is also possible to state lexical entries to be syntactic variants of another, if one
is somehow derived from another. For example, the words “lexicon”, “lexical” and
“lexicalize” are derived from a single root. This is done by means of the lexicalVariant
relation. E.g.,

:lexicon :adjectivalVariant :lexical ;
:verbalVariant :lexicalize .

:adjectivalVariant rdfs:subPropertyOf lemon:lexicalVariant .
:verbalVariant rdfs:subPropertyOf lemon:lexicalVariant .

Example 26

2.2.3 Subphrases as variation

One particular modelling that should be performed as subphrase variation is indicating
subphrases. For example we may indicate that “New York” is a subphrase of “New York
City” by introducing a property subphrase as a subproperty of lexical variant. We may
also use this modelling to indicate some syntactic properties such as the head of a
phrase.

:new_york_city lemon:canonicalForm [lemon:writtenRep "New York City"@en] ;
:subphrase :new_york ;
:head :city .

16

:new_york lemon:canonicalForm [lemon:writtenRep "New York"@en] .

:city lemon:canonicalForm [lemon:writtenRep "City"@en] .

:subphrase rdfs:subPropertyOf lemon:lexicalVariant .
:head rdfs:subPropertyOf lemon:lexicalVariant .

Example 27

Note that this modelling is not intended to be used for deducing the syntactic struc-
ture of a multiple word expression, as such it is not easy to deduce which words com-
pose the sub-phrase. Modelling that can provide this information is described in section
4.

2.2.4 Form variants

As we have already seen senseRelation to relate different senses of a lexical entry, and
lexicalVariant to relate different lexical entries, we will also introduce a third property
formVariant, which relates different forms of the same lexical entries. This property
can often be ignored, as the preferred way to represent form variants is by attaching
an appropriate set of linguistic properties. However an alternative way to represent the
entry “animal” with a plural “animals” is using a formVariant link.

:animal lemon:canonicalForm :animal_sing_form ;
lemon:otherForm :animal_plural_form .

:animal_sing_form lemon:writtenRep "animal"@en ;
:pluralFormOf :animal_plural_form .

:animal_plural_form lemon:writtenRep "animals"@en .

:pluralFormOf rdfs:subPropertyOf lemon:formVariant .

Example 28

We leave it to the implementation of software using the lemonmodel to choose which
method to use, however we observe that the property/value modelling is generally
more compact than form relations.

2.2.5 Translation as variation

Translated variants are for the most part naturally included within the lemon model by
the use of references, as translated variants should share the same reference. Hence
the ontology should act as an intermediate layer linking lexical entries of different lan-
guages. However, in some cases the reference may not be available, or it may be of
interest to mark lexical entries as translations if they do not share the same reference.
In such cases, sub-properties of senseRelation can be used. It should be clear that this
translation link is between senses of words as the term should be disambiguated, even
if there is not a clear reference for the translation. For example, we will consider the
case of “cat” translated into German, and French as “Katze” and “chat” respectively.

:lexicon_en lemon:entry :cat ;
lemon:language “en” .

:lexicon_de lemon:entry :katze ;
lemon:language “de”.

:lexicon_fr lemon:entry :chat ;
lemon:language “fr”.

:cat lemon:canonicalForm [lemon:writtenRep “cat”@en] ;
lemon:sense :cat_sense .

17

:chat lemon:canonicalForm [lemon:writtenRep “chat”@fr] ;
lemon:sense [isocat:translationOf :cat_sense] .

:katze lemon:canonicalForm [lemon:writtenRep “katze”@de] ;
lemon:sense [isocat:translationOf :cat_sense] .

isocat:translationOf rdfs:subPropertyOf lemon:senseRelation .

Example 29

As can be seen the translation arc does not in itself state the language pairs in the
translation, however the language can be extracted from either the lexica containing
the term or from the xml:lang special property.
Modeling translation as variation may be particularly useful if you wish to indi-

cate that a word is a translation of another word. For example, consider the French
words “rivière” and “fleuve” which are both translations of the English word “river”.
However following the definitions of these words (these are given in section 2.4.7)
it may be sensible to map the French words to the anonymous subclasses Water-
Course⊓∃flowsInto.WaterCourse and WaterCourse⊓∃flowsInto.Sea respectively, hence
we get the following modeling:

:river lemon:canonicalForm [lemon:writtenRep “river”@en] ;
lemon:sense :river_sense .

:river_sense lemon:reference ontology:WaterCourse .

:riviere lemon:canonicalForm [lemon:writtenRep “rivière”@fr] ;
lemon:sense [lemon:reference [a owl:Class

owl:equivalentTo [owl:intersectionOf (
ontology:WaterCourse ;
owl:Restriction [

18

owl:onProperty ontology:flowsInto ;
owl:allValuesForm ontology:WaterCourse

]
)

isocat:translationOf :river_sense
]]] .

:fleuve lemon:canonicalForm [lemon:writtenRep “fleuve”@fr] ;
lemon:sense [lemon:reference [a owl:Class

owl:equivalentTo [owl:intersectionOf (
ontology:WaterCourse ;
owl:Restriction [

owl:onProperty ontology:flowsInto ;
owl:allValuesForm ontology:Sea

]
)

isocat:translationOf :river_sense
]]] .

Example 30

Summary of vocabulary introduced in this section

Property Description
formVariant Describes a variant (inflected form) of a writ-

ten representation of a lexical entry
lexicalVariant Describes a variant or derived form of a lexical

entry
senseRelation States a relations between two senses
↳equivalent States two senses are equivalent (symmetric)
↳incompatible States two senses are disjoint (symmetric)
↳broader States one sense is broader than another. In-

verse of narrower
↳narrower States one sense is narrower than another. In-

verser of broader

19

2.3 Phrase Structure Module

Lexical

 Entry
Component

decomposition

element Argument

Phrase

Element

Node

constituent:Resource

phraseRoot

edge

leaf

2.3.1 Decomposition of terms

The base method for representing multi-word lexical entries is by decomposing them
into their component words, this is done through the usage of RDF lists of component
objects. This works as follows.
:siamese_cat lemon:decomposition (

[lemon:element :siamese]
[lemon:element :cat]) .

Example 31
Note that the above example uses the RDF list mechanism, which, while relatively

compact in Turtle syntax, can get quite large in N-Triples form, e.g.,
:siamese_cat lemon:decomposition :siamese_cat_LoC .
:siamese_cat_LoC rdf:first :siamese_cat_C1 .
:siamese_cat_LoC rdf:rest :cat_LoC .
:siamese_cat_C1 lemon:element :siamese .
:cat_LoC rdf:first :siamese_cat_C2 .
:cat_LoC rdf:rest rdf:nil .
:siamese_cat_C2 lemon:element :cat .

20

Example 32

Compound words may also be broken up by the use of components for example, the
German word “Schweineschnitzel” is composed of “Schwein” and “Schnitzel”.8

:schweineschnitzel lemon:decomposition (
[lemon:element :schwein]
[lemon:element :schnitzel]) .

Example 33

lemon indicates the difference between compound words and phrases by the use of
the classes Word and Phrase. As such it is possible to indicate that the composition is
a separation of a multi-word expression into words, by adding type statements for the
elements.

:siamese_cat a lemon:Phrase ;
lemon:decomposition (

[lemon:element :siamese]
[lemon:element :cat]) .

:siamese a lemon:Word .
:cat a lemon:Word .

Example 34

A third subclass of lexical entry, Part, is provided for “part of words”, e.g., affices,
which cannot be realised by themselves but may be stored in the lexicon. For example:

:preordain lemon:decomposition (
[lemon:element :pre]
[lemon:element :ordain]) .

:pre a lemon:Part .
:ordain a lemon:Word .

Example 35

We must note here the decomposition property is not intended for modelling phrase
structure, lemon contains a separatemechanism for modelling this described in sections
2 and 4.

2.3.2 Phrase structures

Themulti-word expression extensions of lemon are intended tomodel phrase structures
of multi-word expressions. These are done through the use of the properties phraseRoot,
edge and leaf, which allows arbitrary graphs to be created and related. For example, the
decomposition of “human immunodeficiency virus” into “[human [immunodeficiency
[virus]]]”, can be represented as follows.

:human_immunodeficiency_virus
lemon:decomposition (:human_component

:immunodeficiency_component
:virus_component) ;

lemon:phraseRoot [
lemon:edge [lemon:leaf :human_component] ;
lemon:edge [
lemon:edge [lemon:leaf :immunodeficiency_component]
lemon:edge [
lemon:edge [lemon:leaf :virus_component]

8Note the extra “e” is a dative inflection so not modelled as a component

21

]
]

] .

:human_component lemon:element :human .
:immondeficiency_component lemon:element :immunodeficiency .
:virus_component lemon:element :virus .

Example 36

It is important to note here that the phrase structure tree is not itself ordered, but
the decomposition is, hence the order is obtained this way. It is further possible to
name the arcs and nodes, by means of the property constituent. For example, we
could extend the above example by denoting the (sub)phrases as follows:

:human_immunodeficiency_virus
lemon:decomposition (:human_component

:immunodeficiency_component
:virus_component) ;

lemon:phraseRoot [lemon:constituent :NP ;
lemon:edge [lemon:constituent :NN ;

lemon:leaf :human_component] ;
lemon:edge [lemon:constituent :NP ;
lemon:edge [lemon:constituent :NN ;

lemon:leaf :immunodeficiency_component] ;
lemon:edge [lemon:constituent :NP ;
lemon:edge [lemon:constituent :NN ;

lemon:leaf :virus_component]
]

]
] .

:human_component lemon:element :human .
:immondeficiency_component lemon:element :immunodeficiency .
:virus_component lemon:element :virus .

Example 37

Note that in the example all the constituents are marked as resources in the model.
This means that there must exist some description already of the valid phrase con-
stituents that exist for a certain grammar. Hence, for each grammar, there must be a
grammar description ontology.

22

It is of course possible for multiple lexical entries to share the same phrase structure
and this provides a more principled modelling of the decomposition than in section 1.
This is as follows:
:new_york_city
lemon:decomposition (:comp1

:comp2
:comp3) ;

lemon:phraseRoot [
lemon:edge :new_york_node ;
lemon:edge [lemon:constituent :NN ;

lemon:leaf :comp3]
] .

:new_york
lemon:decomposition (:comp1

:comp2) ;
lemon:phraseRoot :new_york_node .

:new_york_node
lemon:edge [lemon:constituent :NN ;

lemon:leaf :comp1] ;
lemon:edge [lemon:constituent :NP ;
lemon:edge [lemon:constituent :NN ;

lemon:leaf :comp2]] .

:comp1 lemon:element :new .
:comp2 lemon:element :york .
:comp3 lemon:element :city .

Example 38
Here :new york node is reused from the “New York City” tree as the root of the “New

York” tree.

23

2.3.3 Dependency relations

Dependency grammars focus on the links between different words and so lemon is a
very suitable representation. In fact all a dependency grammar needs to do is create
sub-properties of lemon:edge in its grammar description ontology. For example we could
create a dependency parse of “big red bus” as follows:

:big_red_bus
lemon:decomposition (:big_component

:red_component
:bus_component) ;

lemon:phraseRoot [
:main [lemon:leaf :bus_component ;

:attr [lemon:leaf :red_component]
:attr [lemon:leaf :big_component]
]] .

:main rdfs:subPropertyOf lemon:edge .
:attr rdfs:subPropertyOf lemon:edge .

Example 39

It is of course possible to include both the dependency and the phrase structure
parse simultaneously.
These parses can also be useful for identifying elements in frames. For example

phrasal verbs in English, such as “switch off” can have multiple frames, namely “X
switches Y off” and “X switches off Y”. To perform this we need to be able to state a
decomposition of the phrase, which could be done as follows.

:switch_off lemon:decomposition (:switch_component
:off_component) .

lemon:phraseRoot [lemon:leaf :switch_component ;
:particle [lemon:leaf :off_component]] .

:particle rdfs:subPropertyOf lemon:edge .

Example 40

We will present an alternative approach to this in the next section that uses the full
parse tree (example 43).

24

2.3.4 Noun phrase chunks

It is often case that the full parse tree is not needed and only a section is required, for
example the noun phrase chunks within the entry. This is modelled the same way as
other phrase structure analyses in lemon, however such trees are not complete, i.e.,
they do not have leaf relations. An example of this is given for the phrase “Finan-
cial assets at amortized cost”, which is chunked into “[Finanical Assets] [at amortized
cost]”:

:FinancialAssetsAtAmortizedCost a lemon:LexicalEntry ;
lemon:sense [
lemon:reference ifrs:FinancialAssetsAtAmortizedCost] ;

lemon:canonicalForm [
lemon:writtenRep "finanical assets at amortized cost"@en] ;

lemon:phraseRoot [
lemon:constituent :NP ;
lemon:edge :NPChunk , :PPChunk] .

:FinancialAssets a lemon:LexicalEntry ;
lemon:sense [
lemon:reference ifrs:FinancialAssets] ;

lemon:canonicalForm [
lemon:writtenRep "finanical assets"@en] ;

lemon:phraseRoot :NPChunk .

:AtAmortizedCost a lemon:LexicalEntry ;
lemon:sense [
lemon:reference ifrs:ValueAtAmortizedCost] ;

lemon:canonicalForm [
lemon:writtenRep "at amortized cost"@en] ;

lemon:phraseRoot :PPChunk .

:NPChunk lemon:constituent :NP .
:PPChunk lemon:constituent :PP .

Example 41

25

Summary of vocabulary introduced in this section

Property Description
decomposition Defines a list of components of a lexical entry
element Defines the lexical entry of the given compo-

nent
phraseRoot A pattern describing the phrase structure of a

lexical entry
edge An edge between some nodes
leaf A node’s reference to a component of a lexical

entry
constituent The phrase type of a node

26

2.4 Syntax and Mapping Module

Lexical

 Entry

Argument

Frame
synBehavior

synArg

semArg

subjOfProp

objOfProp

isA

LexicalSense

context:Resource

definition:Resource

condition:Resource

sense
isSenseOf

reference isReferenceOf

propertyDomain

propertyRange

Ontology

subsense

Syntactic

Role

Marker

marker

2.4.1 Frames

lemon’s approach to syntax builds on the notion of a “frame”, which represents a stereo-
typical occurrence of a lexical entry, with a set of arguments. The frame is indicated
with the property synBehavior, and each of the argument with the property synArg. For
example, modeling a simple transitive frame in English (X eats Y) is as follows:

:eat lemon:synBehavior [lemon:synArg :arg1 ;
lemon:synArg :arg2] .

Example 42

It is of course possible to relate these instances of by a subcategorization ontology
such as LexInfo9. For example, it is possible to create subproperties of synArg to repre-
sent the syntactic functions of these arguments. Hence, the above example could be
represented as follows.

:eat lemon:synBehavior [a lexinfo:TransitiveFrame ;
lexinfo:subject :eat_subject ;
lexinfo:object :eat_object] .

lexinfo:TransitiveFrame rdfs:subClassOf lemon:Frame .
lexinfo:subject rdfs:subPropertyOf lemon:synArg .
lexinfo:object rdfs:subPropertyOf lemon:synArg .

Example 43

In many cases frames require a marker for the syntactic argument, this is generally
an adposition, particle or case inflection. These can be modeled as follows.
English: “X is the capital of Y”

:capital_of lemon:synBehavior [lemon:synArg :subject ;
lemon:synArg :pobject] .

:noun_pp_pobject lemon:marker :of .
9http://www.lexinfo.net/ontology/2.0/lexinfo

27

http://www.lexinfo.net/ontology/2.0/lexinfo

Example 44

German: “X bedarf Y [genitive case]”10

:beduerfen lemon:synBehavior [lemon:synArg :subject ;
lemon:synArg :object] .

:genitiv_verb_object lemon:marker isocat:genitiveCase .

Example 45

Japanese: “XはYが好きだ” (double subject construction) (“X ha Y ga suki da” = “X
likes Y” lit. “X (primary subject) Y (secondary subject) is pleasing”)

:suki lemon:synBehavior [lemon:synArg :ha_subject ;
lemon:synArg :ga_subject] .

:ha_subject lemon:marker :ha .
:ga_subject lemon:marker :ga .

Example 46

lemon also allows for modeling using optional arguments in the frame, this is often
the case with, for example, prepositionally marked arguments in English. For example
the verb “move” can have prepositional arguments such “from”,“to”,“by”,“for”,“past”,“away”,“along”
etc. These are modeled as extra arguments to the frame but are not necessary for the
frame to give a valid syntactic realization. This is performed as follows.

:move_frame lemon:synArg :move_frame_subject ,
:move_frame_to_obj ,
:move_frame_from_obj ,
:move_frame_by_obj .

:move_frame_to_obj lemon:marker :to ;
10PropertyValue is the class for the range of property

28

lemon:optional "true"^^xsd:boolean .
:move_frame_from_obj lemon:marker :from ;

lemon:optional "true"^^xsd:boolean .
:move_frame_by_obj lemon:marker :by ;

lemon:optional "true"^^xsd:boolean .

Example 47

2.4.2 Phrase structure and frames

lemon frames may also be combined with the multi-word expressions extension to give
valid parse trees for a particular frame, creating something similar to the substitu-
tion trees used in Tree-Adjoining Grammars. Here the trees are attached to the frame
instead of to the lexical entry, and use the property tree, in addition we need to in-
dicate the order of the components in the phrase structure, which is done by adding
a decomposition to the frame. Note that this decomposition unlike decompositions of
lexical entries may (and in fact must) include the arguments of the frame. For example
“X switches Y off” may generate a parse structure as follows:

:switch_off
lemon:synBehavior
[lemon:synArg :switch_off_subject ,
lemon:synArg :switch_off_object
lemon:tree [
lemon:edge [lemon:leaf :switch_off_subject] ;
lemon:edge [
lemon:edge [lemon:leaf :switch_comp] ;
lemon:edge [
lemon:edge [lemon:leaf :switch_off_object] ;
lemon:edge [
lemon:edge [lemon:leaf :off_component]

]
]

]
] ;
lemon:decomposition (
[lemon:element :switch_off_subject]
[lemon:element :switch_comp]
[lemon:element :switch_off_object]
[lemon:element :off_comp]

)
] .

29

Example 48

2.4.3 Predicate mapping

The mapping part of this module is primarily focussed on linking the entities in the
ontology with the linguistic descriptions. This consists of primarily two tasks: describing
how the arguments of an ontology predicate map to those of a syntactic frame and
adding extra conditions for the applicability of a given mapping.
We shall tackle the first part of this, which requires reifying the arguments of a prop-

erty. Although RDF supports the reification of statements, this is not a reification over
all triples using a given property, rather over a single property. We instead introduce
the idea of a semantic argument, which can be related to the model via three proper-
ties, namely subjOfProp, objOfProp and isA. The former two are used if a lexical sense
has a reference to a property in the ontology, for example

:capital lemon:sense [lemon:reference ontology:capital ;
lemon:subjOfProp :capital_sem_subj ;
lemon:objOfProp :capital_sem_obj] .

Example 49

Similarly lemon views classes as unary predicates like in other formalisms such as
SWRL, the argument is then specified with the property isA

:cat lemon:sense [lemon:reference ontology:Cat ;
lemon:isA :isa_cat] .

Example 50

In fact, lemon does not use separate elements for the syntactic and semantic ar-
guments. This allows for much more economical encoding of arguments than in LMF,
without any loss in expressivity (see section 4.1).

:capital lemon:sense [lemon:reference ontology:capital ;
lemon:subjOfProp :subject ;
lemon:objOfProp :object] ;

30

lemon:synBehavior [lemon:synArg :subject ;
lemon:synArg :object] .

:capital_obj lemon:marker :of .

Example 51

2.4.4 Conditions

Conditions are another mechanism applied to senses to restrict the mapping between
the syntactic and semantic layers. Conditions are something that can be generally
tested to check whether a given lexical entry is appropriate to an ontology reference or
vica versa. One of the main usage of conditions is to describe the necessary constructs
that are beyond the true “sense” of the lexical entry, but are essential to understanding
the mapping. For example the German verb “essen” is generally used for humans,
whereas “fressen” is generally used when the subject is an animal. This can bemodeled
by saying the two verbs are restricted with the propertyDomain and propertyRange. This
is a condition that applies only if the object/subject of the triple in question is in the
appropriate class. In fact, as lemon is based on RDF(S) and OWL and thusmakes an open
world assumption, such conditions are only false if it is provable that the object/subject
is not in the appropriate class.

:essen lemon:sense [lemon:reference ontology:eat ;
lemon:propertyDomain ontology:Human] .

:fressen lemon:sense [lemon:reference ontology:eat ;
lemon:propertyDomain ontology:NonHuman] .

Example 52

lemon only contains these two properties however wemay also extends the condition
property to new conditions as is required. For example, we take the Spanish “párajo”,
which means “bird” but is used only for small birds that can fly. So we may introduce
a property notUsedFor to indicate particular subclasses that the term may not be used
for, e.g., here we indicate that it is not used for ratites (order struthioniformes), the
taxon containing ostriches, emus, rheas and kiwis:

31

:parajo lemon:canonicalForm [
lemon:writtenRep "bird"@es];

lemon:sense [
lemon:reference ontology:Bird ;
:notUsedFor ontology:Ratite

] .

:notUsedFor rdfs:subPropertyOf lemon:condition .

Example 53

We can even include full logical conditions that can be used to test if a sense should
be used by specifying a rule in some logic that can be evaluated. We present such an
example below; it should be read as “does there exist a ?y such that for some individual
?x, flowsInto(?x,?y) and River(?y) hold)/

:riviere lemon:sense [lemon:reference ontology:River ;
lemon:condition [lemon:value "exists ?y : flowsInto(?x,?y), River(?y)"]] .

:fleuve lemon:sense [lemon:reference ontology:River ;
lemon:condition [lemon:value "exists ?y : flowsInto(?x,?y), Sea(?y)"]] .

Example 54

Readers should note we use a new property value here with a blank node. This is
because we require that the range of condition are individuals in order to guarantee
the model is OWL DL compatible. We discuss value more in section 2.1.3.
There is some overlap between conditions and contexts, however as a rule of thumb,

the use of a lexical entry for an ontology entity that violates the context would be
considered “inappropriate” by a reader, where as if the condition is violated it would
be considered “incorrect.”

2.4.5 Mapping to more complex representations

As OWL only supports unary (class), and binary (property) predicates, it is not possible
to simply map more complex syntactic structures to OWL predicates. This requires
mapping these complex predicates to structures in the ontology composed over several
predicates. For example, consider we had the following simple ontology to describe a
giving event, and a lexical entry for ”give” in the lexicon as below.

ontology:giver a owl:ObjectProperty ;
rdfs:domain ontology:GivingEvent ;
rdfs:range ontology:Giver .

ontology:givenObject a owl:ObjectProperty ;
rdfs:domain ontology:GivingEvent ;
rdfs:range ontology:Given .

ontology:givenTo a owl:ObjectProperty ;
rdfs:domain ontology:GivingEvent ;
rdfs:range ontology:Recipient .

ontology:Giver a owl:Class .
ontology:GivingEvent a owl:Class .
ontology:Given a owl:Class .
ontology:Recipient a owl:Class .

Example 55

:give a lemon:Word ;
lemon:synBehavior [lemon:synArg :give_subj ;

lemon:synArg :give_dir_obj ;
lemon:synArg :give_ind_obj] .

32

Example 56
lemon solves such mapping by creating a compound sense, which is composed of

atomic senses which we have described above. As such the lexical entry has a single
compound sense, which is composed of atomic senses that map to the ontology refer-
ence. The composition of these senses is given by the subsense property. We will now
demonstrate how this is used to represent the “giving” ontology represented above.
:give

lemon:sense [
lemon:subsense [

lemon:reference ontology:giver ;
lemon:objOfProp :give_subj ;
lemon:subjOfProp :event] ,

[lemon:reference ontology:givenObject ;
lemon:objOfProp :give_dir_obj ;
lemon:subjOfProp :event] ,

[lemon:reference ontology:givenTo ;
lemon:objOfProp :give_ind_obj ;
lemon:subjOfProp :event]

].

Example 57
Here the lexical entry “give” has a single sense composed of three senses, one for

each property in the ontology. Each of these sub-senses has an argument mapped to
the syntactic frame and one to a new argument element :event, which is not bound to
any syntactic frame, but instead indicates that the subject of all properties should be
the same individual.

2.4.6 Mapping adjectives

Adjectives present particular challenges inmapping andwhile the lemon vocabulary pre-
sented so far is suitable for most mappings, we will present design patterns explaining

33

how mapping with adjectives should be performed. For the most part adjectives are
involved in unary syntactic frames (that is a frame with a single argument), except for
the case where they have a prepositional complement, e.g., “X is similar to Y” or are
used postpositively, e.g., “X ist Y ähnlich” in German. We shall leave these binary cases
as an example to the user as they function like other examples presentend above. As
such we shall only handle the case where adjectives are unary. Given that we have
assumed adjectives are unary then it is clear that on the ontology side they correspond
to classes. For example assume Red is a class in our ontology then we can map the
lexical entry “red” as follows

:red lemon:canonicalForm [lemon:writtenRep "red"@en] ;
lemon:sense [lemon:reference ontology:Red ;

lemon:isA :attr] ;
lemon:synBehavior [lemon:synArg :attr] .

Example 58

In fact the inclusion of adjectives as classes in the ontology is rare in general, but
lemon cannot semantically map lexical entries to semantics that is not extant in the
ontology. As such it is often necessary to the ontology vocabulary, i.e., OWL, to include
these semantics to map to a lexicon. For example consider the example of an ontology
with a property color with values {green, red, blue}. As the color words are individuals
it is not possible to map the syntactic predicates of “red”, “green” and “blue“ to them
without first making them into classes. This is simply done as follows

ontology:Green a owl:Class ;
owl:equivalentTo [a owl:Restriction ;
owl:onProperty ontology:color ;
owl:hasValue ontology:green

] .

DL Syntax:
Green≡∋color.green

Example 59

Then these classes are mappable like the previous example. An even more complex
example exists if you wish to map an adjective to a datatype property, for example
“big” to a property size. As of OWL2 there exists vocabulary to define classes in terms
of data type properties, so we may define a class of big cities, BigCity, as all cities of
size greater than 500,000.

ontology:BigCity a owl:Class
owl:equivalentTo [owl:intersectionOf (
ontology:City
[a owl:Restriction ;
owl:onProperty ontology:size ;
owl:someValueFrom [a rdfs:Datatype ;

owl:onDatatype xsd:integer ;
owl:withRestrictions ([xsd:minExclusive 500000])

]
])

] .

34

DLSyntax:
BigCity≡City⊓∃size.integer[> 500000]

Example 60

Another aspect of adjectives is that they are frequently used comparatively or su-
perlatively, that is with “more” and “most.” Again this behavior can only be analyzed
if the appropriate semantics exist within the ontology. For example, consider we have
“big” and we wish to define “bigger”, this clearly gives a binary frame “X is bigger
than Y” and hence must be matched to a property in the ontology as follows, the frame
should then be marked in someway as a comparative frame, for example in LexInfo 2
this is done by the AdjectiveComparativeFrame. So we could map as follows.

:big lemon:canonicalForm [lemon:writtenRep "big"@en] ;
lemon:otherForm [lemon:writtenRep "bigger"@en ;

isocat:degree isocat:comparative] ;
lemon:synBehavior [a lexinfo:AdjectiveComparativeFrame ;

lexinfo:copulativeSubj :subj ;
lexinfo:comparativeComplement :comp]

lemon:sense [lemon:reference ontology:biggerThan ;
lemon:subjOfProp :subj ;
lemon:objOfProp :comp] .

lexinfo:AdjectiveComparativeFrame rdfs:subClassOf lemon:Frame .
lexinfo:copulativeSubj rdfs:subPropertyOf lemon:synArg .
lexinfo:comparativeComplement rdfs:subPropertyOf lemon:synArg .

Example 61

This comparative property is not currently representable in OWL, however it is pos-
sible to express it in SWRL, for example we could define the biggerThan property in the
following way

:y rdf:type swrl:Variable .
:x rdf:type swrl:Variable .
:s1 rdf:type swrl:Variable .
:s2 rdf:type swrl:Variable .
[rdf:type swrl:Imp ;
swrl:body ([rdf:type swrl:ClassAtom ;

swrl:classPredicate :City ;
swrl:argument1 :x

]
[rdf:type swrl:ClassAtom ;
swrl:classPredicate :City ;
swrl:argument1 :y

]
[rdf:type swrl:DatavaluedPropertyAtom ;
swrl:argument2 :s1 ;

35

swrl:propertyPredicate :size ;
swrl:argument1 :x

]
[rdf:type swrl:DatavaluedPropertyAtom ;
swrl:argument2 :s2 ;
swrl:propertyPredicate :size ;
swrl:argument1 :y

]
[rdf:type swrl:BuiltinAtom ;
swrl:builtin swrlb:greaterThan ;
swrl:arguments (:s1

:s2)
]

) ;
swrl:head ([rdf:type swrl:IndividualPropertyAtom ;

swrl:propertyPredicate :biggerThan ;
swrl:argument1 :x ;
swrl:argument2 :y

]
)] .

SWRL Rule:
City(?x) , City(?y) , size(?x, ?s1) , size(?y, ?s2) , greaterThan(?s1, ?s2) → biggerThan(?x,

?y)

Example 62

2.4.7 Correspondence

The key understanding of a sense is as a correspondence betwen an ontology entity
and a lexical entry and as such the set of senses in the lexicon constitute a many-to-
many mapping between lexical entries and ontology entities. This means that each
sense must apply to exactly one lexical entry and one ontology element. Thus, for any
ontology-based disambiguation task the challenge can be simply specified as selecting
the correct sense for the task. For this reason lemon provides a number of features that
should prove useful for this task, which are detailed in section ??.
There are several reasons for defining the correspondence as an element of the lexi-

con. Firstly, to allow further description of pragmatic usage between the two terms: for
example, “cats and dogs” would be considered a natural usage whereas “Felis Catus
and dogs” would be considered odd as the pragmatic register of the two terms is dif-
ferent. Although lemon also includes features to assign words to a pragmatic context,
it does require the definition of a pragmatic taxonomy, which must be done for any
particular application of the model.
The second case is where some terms are closely lexically bound, i.e., they gen-

erally occur together. An example from French is “rivière et fleuve”, which are often
used together to express the same concept in English as “river”. It is natural that we
should wish to connect these two terms by indicating they have disjoint senses that
together constitute the idea of “river”. As the meaning of “rivière” in French is defined
by Larousse as

Cours d’eau de faible ou moyenne importance qui se jette dans un autre
cours d’eau (Watercourse of small size or little importance, which flows into
another watercourse)

This can be considered in a semantic sense to be nearly equivalent to the French
term “affluent”, defined as

Un cours d’eau qui se jette dans un autre. (A watercourse which flows into
another)

36

However, a system generating “fleuve et affluent” as the equivalent concept to that
of “river” would generally not be considered to be correct, due to lexical collocations.
In fact for reference resolution it may be better to assert “affluent” as a broader term
for “rivière”, as every usage of “rivière” is necessarily an “affluent”.
The final case is where terms are used in a metaphoric or metonymic manner. For

example,

The White House said today, ...

Here “the White House” does not refer to the literal building but the spokesperson
and other members of the organization in that building. As such the correspondence
would give an ontology entity with the properties of being a human or organization;
although reasoning using this information, may generate odd statements such as

*The White House is a member of the species Homo Sapiens

Thus we need to define the lexical semantics as clearly separate from those of
the ontological element. This could be done for example by asserting something as
a metonymic raising of another sense e.g.,

:white_house
lemon:canonicalForm [lemon:writtenRep "The White House"@en] ;
lemon:sense :white_house_sense .

:white_house_spokesperson
lemon:canonicalForm [lemon:writtenRep

"White House Spokesperson"@ en] ;
lemon:sense :white_house_spokesperson_sense .

:white_house_sense :metonymicRaisingOf :white_house_spokesperson_sense.

:metonymicRaisingOf rdfs:subPropertyOf lemon:senseRelation.

Summary of vocabulary introduced in this section

Property Description
synBehavior The frame of a lexical entry.
synArg The syntactic slots of a frame.
marker The case or lexical element that marks a se-

mantic argument.
optional Indicates an argument is not required in order

to realize a frame.
tree Indicates the a lexicalized grammar tree at-

tached to a frame.
semArg A semantic argument
↳subjOfProp The subject of property
↳objOfProp The object of a property
↳isA The argument of a class predicate
context A contextual parameter on the mapping
condition A condition that can be checked to see if the

given lexical entry and reference correspond
in the given context

↳propertyDomain A condition on the domain of the property be-
ing mapped to

↳propertyRange A condition on the range of the property being
mapped to

subsense Indicates an atomic sense that composes a
compound sense

37

2.5 Morphology Module

The usual lemon method for representing different forms of the same lexical entry
is to indicate all non-canonical forms by the use of the otherForm property. While this
may be reasonably practical for English as there are only four, three and two forms for
verbs, adjectives and nouns respectively, there can be many forms for items of more
synthetic languages. For example, a regular verb in Italian, such as “amare”, has 43
distinct forms, and encoding all of these as seperate forms for every word would greatly
increase the size of lexicon. This problem is even more acute for languages exhibiting
polysynthesis, where multiple inflections may be combined. For example in Japanese
the following (among other) inflections of the regular verb exist (here “taberu”, to eat)
.

Positive Negative
Present taberu tabenai
Past tabeta tabenakatta
The same verb also can be inflected to give a passive form, “taberareru”, and a

causative form, “tabesaseru”11. These forms are in fact verbs, that have the same
inflections as the regular verb. To further complicate things, both the passive and
causative may be combined to give a passive-causative form “tabesaserareru”. As
such the following form of the verb exists, which may be decomposed as follows (the
meaning is “(he) was not made to eat”).

tabe - sase - rare - naka - tta
tabe saseru rareru nai ta
stem causative passive negative past

Example 63
This leads to a very large number of inflections and as such it is difficult to state how

many word forms exist for a Japanese verb, although in practice it is unlikely that verbs
composed of more than 5 morphemes occur. Therefore, a minimal encoding is needed
that allows regular and semi-regular verbs to be represented economically.
In difference to the majority of the vocabulary in lemon, this morphology is not spe-

cific to a given lexicon, in fact the samemorphological rules can be used for any lexicon
within the same language. As such, it should not be necessary for most lexica to rep-
resent the morphology of their given language, and for most major language bespoke
systems will often in practice be more useful than the modules described here. How-
ever, there are use cases where this is useful, for example for resource-poor languages
it may be preferable to have a common representation of morphology. Furthermore,
bespoke systems are often opaque about the methods they use for generating inflec-
tional morphology and this can make it difficult with words that have unusual forms (a
11The meaning of the causative is approximately “to cause to do”

38

simple example in English is that nouns ending in “y” normally have a plural in “ies”,
e.g., “cherries”, but in some odd cases has a plural in “ys”, e.g., “the two Germanys”).

2.5.1 Inflection

The morphology of a word is given by a pattern, which is composed of a set of trans-
forms, that is in turn composed of rules and produces a form described as a prototype.
To give a simple example we will look at how we represent that English nouns form their
plural in ”s”

:english_noun a lemon:MorphPattern ;
lemon:transform [
lemon:rule "~s" ;
lemon:generates [
isocat:number isocat:plural

]
] .

Example 64

This gives a pattern, with a single rule defined as "˜s" that generates a prototype
with the property number with value plural. The rules are specified in a simple man-
ner where the tilde symbol represents the canonical form and then the “s” is simply
appended. A lexical entry may be indicated to have a given morphological pattern by
the pattern property as follows.

:cat lemon:pattern :english_noun

Example 65

The rule above is clearly not sufficient: for example for the word “cherry” it would
generate the erroneous plural “cherrys.” Another rule can be added to handle this case,
for example

:english_noun a lemon:MorphPattern ;
lemon:transform [
lemon:rule "~s" ;
lemon:rule "~y/~ies" ;
lemon:generates [
isocat:number isocat:plural

]
] .

Example 66

In this example the slash indicates the difference between the matcher and the
replacer as such for the rule to applies the canonical form must first match the matcher
and then the matched text is replaced with the replacer. The first rule has no matcher
and so is assumed to match all canonical forms that aren’t matched by a more specific
rule.12 This rule is still not correct as it generates for “play” the form “plaies”. As such
we should further modify the rule to check for a preceding vowel this is done as follows

:english_noun a lemon:MorphPattern ;
lemon:transform [
lemon:rule "~s" ;
lemon:rule "~(<?![aeiou])y/~ies" ;
lemon:generates [
isocat:number isocat:plural

]
] .
12It is up to the lexicon author to ensure no two matchers can match the same string

39

Example 67

In fact, as this example may have hinted the underlying representation of the rules
used by this module are in fact Perl-like regular expressions13. In fact as such an al-
ternative rule that performs the same task "˜([ˆaeiou])y/˜$1ies"; note that here the
penultimate constonant must be reintroduced as it gets removed by being matched,
and this is done with "$1". We think it is clearer to state rules using the look-ahead and
look-behind assertions (namely (?=X), (?!X), (<?=X), and (<?!X)), as they do not cause
vowels to be lost. Another reason for prefering these zero-width assertions is that in
implementation the tildes must be translated to (.*) and $1 respectively, and it makes
it easier to do this if there are no groups on the left hand side.
The use of the tilde is useful is as it makes it easier to represent both prefices and

suffices, for example consider the case of the German perfect participle, this is formed
for regular weak verbs by prefixing “ge” and changing the inflectional suffix to “t”. We
can model this as follows

:german_weak_verb a lemon:MorphPattern ;
lemon:transform [
lemon:rule "~e?n/ge~t" ;
lemon:generates [
isocat:tense isocat:past ;
isocat:aspect isocat:perfective ;
isocat:verbFormMood isocat:participle
]

] .

Example 68

Of course it is natural it is possible for a pattern to havemultiple transforms and even
for a transform to have multiple generations. For example, we shall show an example
for Italian generating the present singular first and third person forms and then using
the third person singular to get the singular imperative

:italian_are_verb a lemon:MorphPattern ;
lemon:transform [
lemon:rule "~are/~o" ;
lemon:generates [
isocat:tense isocat:present ;
isocat:person isocat:firstPerson ;
isocat:number isocat:singular

]
] , [
lemon:rule "~are/~a" ;
lemon:generates [

isocat:tense isocat:present ;
isocat:person isocat:firstPerson ;
isocat:number isocat:singular

] , [
isocat:verbFormMoode isocat:imperative ;
isocat:number isocat:singular

]
] .

Example 69
13There is no standard for Perl-like regular expressions, here we assume that these rules must support
the functionality of POSIX regular expressions, and in addition the + operator, negated character classes,
non-greedy quantifiers, shy groups, lookahead and lookbehind assertions, backreferences, directives and
conditionals. This condition is satisfied by the standard regular expressions libraries for Java (and other JVM
Languages), the .NET platform, Perl, PHP and Python, the Boost.Regex library for C/C++ and the Unix grep
command.

40

Sometimes the canonical form alone is not sufficient to generate all forms of the
word, for this reason other forms must be used as the base for generating some forms,
and these forms should be given in the lexicon. An example is German mixed verbs,
for example “denken”, to think, that has an irregular past “dachte”. This form is the
first (and third) person singular preterite, and the second person singular is created by
adding “st” to this form. For these cases the onStem property is provided, for example:

:german_mixed_verb a lemon:MorphPattern ;
lemon:transform [
lemon:onStem [
isocat:tense isocat:past ;
isocat:verbFormMood isocat:indicative ;
isocat:person isocat:firstPerson ;
isocat:number isocat:singular

] ;
lemon:rule "~st" ;
lemon:generates [
isocat:tense isocat:past ;
isocat:verbFormMood isocat:indicative ;
isocat:person isocat:secondPerson ;
isocat:number isocat:singular

]
] .

Example 70

For polysynthesis as in example 60,we introduce a property that indicates how mul-
tiple inflections can be composed called nextScope. So the inflections that compose the
example are as follows14

:japanese_vowel_stem_verb a lemon:MorphPattern ;
lemon:transform :causative_transform ,

:passive_transform ,
:negative_transform ,
:past_transform_on_negative .

:causative_transform lemon:rule "~ru/~saseru" ;
lemon:nextScope :passive_transform, :negative_transform ;
lemon:generates [
isocat:voice isocat:causativeVoice

] .

:passive_transform lemon:rule "~ru/~rareru" ;
lemon:nextScope :negative_tranform ;
lemon:generates [
isocat:voice isocat:passiveVoice

] .
14For readability we will continue to use Hepburn romanization, examples should in fact be represented in
native script.

41

:negative_transform lemon:rule "~ru/~nai" ;
lemon:nextScope :past_transform_on_negative ;
lemon:generates [
isocat:negative isocat:yes

] .

:past_transform_on_negative lemon:onStem [
isocat:negative isocat:yes ;
isocat:tense isocat:present

] ;
lemon:rule "~i/~katta" ;
lemon:generates [
isocat:negative isocat:yes ;
isocat:tense isocat:past

] .

Example 71

2.5.2 Agglutination

Many languages uses agglutination where the form of a word is dependent on neighbor-
ing words and we would like to be able to represent this as well. We use agglutination
as a word that covers many distinct phenomena such as assimilation, liasion, sindha
and vowel harmony. For example, in Maltese the definite article “il-” is a proclitic that
assimilates with the first phoneme of the following word if it is a coronal constonant or
vowel. For example

il- + missier il-missier the father
il- + omm l-omm the mother
il- + tifel it-tifel the boy

Example 72

42

The rules for doing this are similar to inflection rules but include the symbol “+” to
indicate the word with which the agglutination occurs. So we describe maltese agglu-
tination as follows

:maltese_il_assimilation a lemon:MorphPattern ;
lemon:transform [

lemon:rule "~l+([ċdnrstxżz])/~$2-$2" ;
lemon:rule "~l+([aeiou])/l-$2"

] .

Example 73

Note that this pattern only applies to one word, it is written in a way that could be
used elsewhere if the pattern occurs differently. Similarly $2 is used as the matcher (as
$1 corresponds to ˜).
Hungarian (as well as all Uralic and many Altaic langauges) exhibit an interesting

agglutinative property known as vowel harmony, in which the vowels in a suffix must
agree with the vowels in the preceding word. Hungarian groups the vowels into three
categories back vowels (a, o, u), front vowels (ö, ü) and intermediate vowels (e, i).
Prepositions and cases in Hungarian are prefices which must agree in terms of their
vowel for example

lakás + hoz lakáshoz to the house
szem + hoz szemhez to the eye
kör + hoz körhöz to the circle

Example 74

This can be modeled using different stem forms as in example 67,so we would model
this as follows15

:hungarian_vowel_harmony a lemon:MorphPattern ;
lemon:transform [
lemon:onStem [
dcr:vowelHarmony dcr:back

]
lemon:rule "^([^öőüűeéií]*[aáoóuú].*)+~/$1+~" ;

] , [
lemon:onStem [
dcr:vowelHarmony dcr:intermediate

]
lemon:rule "^([^aáoóuúeéií]*[öőüű].*)+~/$1+~" ;

] , [
lemon:onStem [
dcr:vowelHarmony dcr:front

]
lemon:rule "^([^aáoóuúöőüű]*[eéií].*)+~/$1+~" ;

] .

Example 75

Here the regular expression matches the hole of the agglutination, indicated by the
ˆ indicating the start of string.
15Vowel harmony is currently not a property expressed in ISOcat so we will use the prefix dcr here. We also
include the Hungarian long vowels (á, é, í, ó, ú, ő, ű) in this example.

43

Summary of vocabulary introduced in this section

Property Description
pattern Indicates the morphological pattern used by a

lexical entry
transform Indicates a single possible transform used by

a morphological pattern
rule The rule used by a particular transform
generates The prototype for a form generated by a trans-

form
onStem The prototype for a from used as input for a

transform
nextTransform Indicates a potential sequence in a compound

transform

44

3 Advanced Issues
3.1 Annotations and Global Restrictions
lemon does not implement a model for storing other meta-data and applying global
restrictions on the lexicon, instead reusing the methodologies from RDF and OWL to
achieve this.

3.1.1 Annotation schemes

One of the most important issues in terminology management is the ability to express
the ownership and creation date of a lexicon and its entries. lemon has nomechanism of
its own for performing this task instead, like many other RDF models it uses the Dublin
Core vocabulary for this. The Dublin Core vocabulary allows the following to be stated:

• Creator: The creator of the given resource

• Description: A description of the resource. lemon:definition should be used for
defining senses of lexical entries, dublincore:description for describing other parts
of the model e.g., the lexicon object.

• Publisher: The publisher of the data

• Contributor: Any contributors to the given lexicon

• Date: The date a given resource was created

• Format: Generally should be specified as MIME. Use with care, as the format of
the ontology may change.

• Identifier: An identifier of the lexicon or entry (useful if converting from another
format)

• Source: The source of a given resource

• Coverage: The time and location covered by the resource (if relevant)

• Rights: Any copyright information

In addition, there are several annotations available in the OWL and RDF schemas
that are useful for lexicon management

• owl:backwardCompatibleWith: The lexicon is compatible with some previous lexicon

• rdfs:comment: A comment about a resource

• owl:deprecated: Indicates the resource should not be used any more

• owl:incompatibleWith: The lexicon is incompatible with some previous lexicon

• rdfs:isDefinedBy: The resource is fully defined else where

• owl:priorVersion: Indicates an earlier version of the lexicon

• rdfs:seeAlso: Refer to another web resource

• owl:versionInfo: The version number of the lexicon

This information can of course simply be added as triples

45

@prefix dublincore: <http://purl.org/dc/elements/1.1/>
@prefix rdfs: <http://www.w3.org/2001/02/rdf-schema#>
@prefix owl: <http://www.w3.org/2002/07/owl#>

:myLexicon a lemon:Lexicon ;
dublincore:creator "John McCrae" ;
dublincore:date "2010-07-24"^^xsd:date ;
rdfs:comment "An example lexicon from the lemon cookbook"@en ;
lemon:language "en" ;
lemon:entry :cat .

:cat a lemon:Word ;
dublincore:creator "John McCrae" ;
dublincore:date "2010-07-25"^^xsd:date ;
rdfs:seeAlso "http://en.wikipedia.org/wiki/Cat" ;
lemon:canonicalForm [lemon:writtenRep "cat"@en] .
.

Example 76

The use of these annotations is another reason why the ranges of many properties
are resources instead of literals as expected. For example we could now easily state
the source of a definition as follows.

:cat lemon:sense [lemon:reference ontology:cat ;
lemon:definition [

lemon:value "The cat is a small domesticated carnivorous animal"@en ;
dublincore:source "http://en.wikipedia.org/wiki/Cat"]

] .

Example 77

3.1.2 Global Information

LMF provides several classes for describing global information about the lexicon and
constraints. lemon, however, does not need to do this as it can use the OWL language
to specify decidable constraints on the lexicon. OWL will not be fully described here
however there are many excellent resources available. A good place to start may be
the W3C documents available at http://www.w3.org/standards/techs/owl#w3c_all. Here
we shall show an example of how OWL can be used to specify that French nouns are
only masculine or feminine.

:FrenchLexicon a owl:Class ;
owl:equivalentTo [owl:intersectionOf (
lemon:Lexicon
[a owl:Restriction ;

owl:onProperty lemon:language ;
owl:hasValue “fr”]

)] ;
rdfs:subClassOf [a owl:Restriction ;
owl:onProperty lemon:entry ;
owl:allValuesForm :FrenchWord] .

:Noun a owl:Class ;
owl:equivalentTo [a owl:Restriction ;

owl:onProperty isocat:partOfSpeech ;
owl:hasValue isocat:noun] .

:FrenchWord a owl:Class .

46

http://www.w3.org/standards/techs/owl#w3c_all

:FrenchNoun a owl:Class ;
owl:equivalentTo [owl:intersectionOf (
:FrenchWord :Noun)] ;

rdfs:subClassOf [a owl:Restriction ;
owl:onProperty isocat:grammaticalGender ;
owl:allValuesFrom [owl:oneOf (
isocat:masculine isocat:feminine)]] .

The OWL restrictions are as follows in DL syntax:

FrenchLexicon≡Lexicon⊓∋language.”fr”

FrenchLexicon⊑∀entry.FrenchWord

Noun≡∋partOfSpeech.noun

FrenchNoun≡FrenchWord⊓Noun

FrenchNoun⊑∀grammaticalGender.{masculine, feminine}

We first state that FrenchLexicons are those lexica that have the value “fr” for the
language property, and that all entries of FrenchLexicons are FrenchWords. We then define
the class Noun as all things that have the value noun for the partOfSpeech property and
then that FrenchNouns are FrenchWords that are also Nouns. Finally the key restriction
is that every FrenchNoun has its grammaticalGender from the set {masculine, feminine}.
(Note we do not assert here that the gender cannot be both masculine and feminine,
as some words may be both, such as “après-midi”, however it is of course possible to
do so).

Property Description
topic The topic of a lexicon or lexical entry
definition The definition of a lexical entry relative to a

sense.

47

3.2 The semantics of the lemon model
One of the most important aspects of a lemon model is the connection between the
semantics contained within the lexicon, and the semantics in the ontology. Before
we can hope to handle this difficult task we divide the tasks that are intended to be
performed into three main groups

• Lexical: These are tasks that belong purely to the lexical layer of lemon and can
be processed without strong semantic knowledge

– Tokenization: Identifying words and components
– Chunking: Identifying multi-word elements
– POS-Tagging: Identifying labels for each token/chunk.
– Lemmatization: Decomposing terms into inflectional components.
– Parsing: Building a parse tree over a sentence.
– Coreference: Deducing which elements in a sentence share a reference. (N.B.,
this task can often be considered to include weak semantic knowledge as
well).

– Inflection: Inverse of lemmatization
– Grammar Generation: Inverse of parsing.

• Correspondence: Involves tasks that primarily focus on the task of connecting
lexical realizations to conceptual objects.

– Annotation/Word Sense Disambiguation: Converting the lexical representa-
tion to a semantic (ontological) relation

– Selection: Inverse of grounding

• Reasoning: Making higher level deductions based on an ontological representa-
tion without lexical information.

3.2.1 Formal model of lemon senses

The primary model that we use to describe the semantics of lemon is inspired by this
and views these tasks is that of an aligned semantic interpretation. Assume we have
a language, L, on a vocabulary, Σ, i.e., L ⊆ Σ∗. Say we have a lexicon, X , and we can
define a language, X ⊆ X ∗, that constitutes all description of sentences in terms of
the lexical entries it uses and the dependencies between the entries. Furthermore, we
assume we have a lexicalization function l that maps a sentence in the language to a
list of lexical representations taken from a lexicon, X , that is that l is a function with
the signature:

l : L → X

We call such an l a lexical interpretation and represents the result of the lexical
parsing stages applied above, we simplify the definition here by assuming that this
results in a single unambiguous representation relative to the lexicon.
Similarly assume we have an ontologyO, which can be used with a logic, L, such that

we have a language O ⊆ (O ∪ L)∗. Again, we define a function s that maps a sentence
in the language to its semantic representations, this function is called the semantic
interpretation and has the signature:

s : L → P(O)

This function is indicated to input the set of correct results from all the lexical, cor-
respondence and reasoning based analysis processes.
For example we take a simple sentence “Theman bites the dog,” we assume that the

lexicon contains the entities {man,dog,bite(·, ·)} and the ontology contains two classes

48

Man and Dog and a property bite. Now, for example, we could have the folllowing
interpretations:

l(“Theman bites the dog”) = bite(man,dog)

s(“Theman bites the dog”) = ∃x, y : Man(x) ∧Dog(y) ∧ bite(x, y)

We may then define an aligment, A ⊆ (X × O)∗ such that if we have µ ∈ X, then for
all σ ∈ L such that l(σ) = µ, we have aµ,p ∈ A for each p ∈ s(σ). Furthermore we require
that if µ = λ1 . . . λn, p = o1 . . . om then we have aµ,p = α1 . . . αn such that αi = (λi, oj) for
some j : 1 ≤ j ≤ m.
We then define the set of senses in the lexicon, S ⊆ (X ×O), as the set satisfying

(λ, o) ∈ S ⇔ ∃α1 . . . αn ∈ A, i such that 1 ≤ i ≤ n ∧ αi = (λ, o)

As such our example may be explained by the following:

aµ,p = (bite(·, ·), bite)(man,Man)(dog, Dog)

{(man,Man), (dog, Dog), (bite(·, ·), bite)} ⊆ S

This can be illustrated as follows:

We view the sense as having three aspects:

• From the lexical point of view s indicates a disambiguated usage of a term, we
call this a Disambiguated Lexical Entry or DALE. We can formally define the set of
DALEs, Dλ for a lexical entry λ as follows:

Dλ = {dλ,o|(λ, o) ∈ S}

• From the semantic view, s represents a sub-entity representing only the usage
of a given class or property or individual when the given lexical entry is used to
describe it. We call this an projected ontology sub-entity or POSE. We can formally
define this as an ontology entity πs such that:

πs v o

πs ≡ ⊥ ⇔ o ≡ ⊥

• Finally we can view S as a pair representing a possible alignment between the
lexicographic and the semantic representations. We call this a correspondence.

We define the lemon senseRelations, equivalent, narrower, broader and incompatible
and their relationship to the ontology as follows:

s1 = s2 ⇔ πs1 ≡ πs2 (1)

s1 < s2 ⇔ πs1 < πs2 (2)
s1 > s2 ⇔ πs1 = πs2 (3)

s1 ⊗ s2 ⇔ πs1 u πs2 = ⊥ (4)
Theorem
If we have o1, o2 ∈ O and some corresponding senses s1, s2 ∈ S then the following

hold:

1. o1 u o2 ≡ ⊥ ` s1 ⊗ s2

49

2. s1 = s2 ` o1 u o2 6≡ ⊥ ∨ o2 ≡ o1 ≡ ⊥

3. s1 > s2 ` o1 u o2 6≡ ⊥ ∨ o2 ≡ ⊥

Proof

1. We have πs1 v o1 and πs2 v o2 hence πs1 u πs2 v o1 u o2 hence we have πs1 u πs2 ≡ ⊥
hence s1 ⊗ s2

2. Assume o2 6≡ ⊥ hence it follows that πs2 6≡ ⊥, but we have πs2 ≡ πs1 hence o1 u o2 w
πs1 u πs2 ≡ πs2 6≡ ⊥. Similarly for o1 6≡ ⊥.

3. (As 2.)

As a motivating example for making this distinction consider the example of “stu-
dent” and “person”, these are asserted to be hypernyms in WordNet however in a
strict ontology sense are not in a subsumption (subclass) relation. In fact “student” is a
role of a “person” and would not be modeled the same in a well-reasoned ontology (i.e.,
DOLCE, which would distinguish “student” as anti-rigid and “person” as rigid). However
for certain tasks, such as coreference resolution, it is necessary to have these “lexical”
semantics, and as such we include them within the lexicon. As such it is possible to
state the “student“ is a narrower sense of “person”, without affecting the correctness
or the ontology.
In the context of coreference this modelling can be used for word sense disambigua-

tion and coreference as it contains lexical semantics that are weaker than those in the
ontology. In particular, there are four relations defined in lemon that are used to aid
these tasks: equivalent, disjoint, broader and narrower. Each of these can be under-
stood in the following manner.

• equivalent: Two DALEs which have equivalent senses can be substituted for each
other without changing the semantics of the text. This should be assumed to be
a positive feature for coreference.

• incompatible: Two DALEs which have incompatible (disjoint) senses cannot be
substituted for each other without changing the semantics of the text. This should
be considered to be a negative feature for coreference.

• broader/narrower: If a DALE is asserted to be broader than another DALE, then it
can be substituted to give a more general semantics. This should be considered
a positive feature for coreference, if the preceding term is narrower.

50

4 Relation to existing systems
4.1 LMF
LMF (Francopoulo et al., 2006) is a framework for describing lexicons and it has a strong
influence on lemon. LMF was primarily intended for XML representation, and it has some
constraints and factors we do not have in our RDF-based model

• No named links: Arcs in LMF are not named, in contrast to lemon where they must
be named.

• Composition/Association: LMF models relationships between elements as either
being compositional or associational, this is not considered important for our RDF
framework

• No ontology: LMF does not have an existing ontological framework to build on like
OWL.

• Little external linkage: In contrast to lemon, LMF does not refer to other frame-
works, or link to other descriptive frameworks (with one exception see below).

As such, although we declare lemon to be highly compliant with LMF, we need now
to describe the steps in converting a lemon model to a LMF lexicon.

lemon drops many elements

lemon has significantly fewer elements than LMF. This is partly due to the use of RDF
which generally allows for a much more compact representation of complex interlinked
data. We have also chosen to remove all nodes from LMF that are purely structural and
carry no information such as SyntacticBehaviour and PredicativeRepresentation (it also
appears that these elements may be artifacts of the XML representation). Due to the
RDF representation it is not necessary to have nodes that describe links between ele-
ments. This means that elements such as RelatedForm, SenseRelation and MWEEdge
are replaced with properties in lemon (formVariant, senseRelation and edge respec-
tively). Finally, we found that by using RDF themapping from syntax to semantics could
be represented much more compactly so we have only senses and arguments covering
LMF’s SemanticPredicate, PredicativeRepresentation, SemanticArgument, SyntacticAr-
gument, SynSemArgMap and SynSemCorrespondence.

lemon modifies some element names

Many lemon class names are different from their LMF equivalents. This is primarily
to keep the names short and to avoid close naming between the classes and their
associated properties. lemon also uses US English spelling, so the syntactic behavior
has been respelled appropriately.

lemon LMF
Frame SubcategorizationFrame
LexicalSense Sense
Node MWENode
OntologyReference MonolingualExternalRef
synBehavior SyntacticBehaviour

Senses and semantics

One of the primary differences between LMF and lemon is the handling of semantics.
In LMF, similarly to other resources such as WordNet, there are a fixed set of senses,
however in lemon the sense ties the lexical entry to an ontology. There are several
reasons for this: It is difficult to be certain of a fixed set of senses that fully capture all
meanings of a word. Words are frequently used with meanings beyond the dictionary
set of senses (e.g., metonymic raising). Different languages frequently divide senses

51

in ways that are not natural in the other language (e.g., “river” in English and “riv-
ière” and “fleuve” in French). Senses have no inherent meaning, i.e., practical systems
can only understand the meaning of a word by grounding it in some ontologically de-
scribed formalism. Ontology languages provide better modeling of semantics than a
lexicon-based system can. Note that although lemon is intended to and likely to be used
primarily with OWL, it is not necessary that the ontology system is OWL.
For these reasons the semantic modeling in lemon is more lightweight than that of

LMF and so we have far fewer classes, as we do not wish to significantly duplicate the
semantic modeling that should exist in the ontology.

Differences in the linguistic description

Most elements of the LMF vocabulary are defined by data values attached to the given
instances, for example LMF says that a lexical entrymay have properties such as partOf-
Speech and grammaticalGender. In lemon such annotations are obtained by use of
linguistic description ontologies, such as ISOcat. LMF’s models ideally use ISOcat to
provide its data categories so alignment in this case should be a trivial matter.

What lemon has that LMF doesn’t

• Description of syntactic frames (subcategorization) by use of phrase structure

• Mapping to ontology predicates

• Pragmatic context

• Sense conditions and contexts

What lemon omits from LMF

• Morphology: lemon does not provide process descriptions of inflection generation.

• Lexeme properties in subcategorization frames: this is replaced by MWE/Frame
links

• Synsets: lemon handles this through the use of ontology reference, i.e., the synset
is the set of lexical senses that share a reference.

• Tests of cross-lingual mappings: replaced by sense conditions

• Global lexicon constraints: replaced by OWL restrictions

4.2 SKOS
lemon is designed to subsumemost of the features of SKOS (Miles and Bechhofer, 2009),
in particular the ability to state preferred labels and represent soft semantic relations.
lemon uses the sub-properties of lexicalForm and isReferenceOf to more precisely cap-
ture the same semantics as SKOS’s prefLabel, altLabel and hiddenLabel. The conver-
sion is as follows:

Canonical Form Other Form Abstract Form
Preferred Reference of prefLabel altLabel hiddenLabel
Alternative Reference of altLabel altLabel hiddenLabel
Hidden Reference of hiddenLabel hiddenLabel hiddenLabel
As such it should be easy to convert a lemonmodel into a SKOSmodel, but converting

the other way is harder as it involves deducing if the reason for an alternative or hidden
label is pragmatic or morphosyntactic.

lemon also allows for SKOS’s semantic properties broader, narrower and related to
be mapped in a one-to-one manner to lemon’s broader, narrower and senseRelation.
Although Like the lemon properties are – like their SKOS counterparts – not transi-
tive, lemon’s concept of senses being related (i.e. senseRelation) is a super property
of broader and narrower.

52

4.3 TBX
TBX (Term Base eXchange, ISO 30042) is a standard that is used for exchanging termi-
nology databases and in particular translation memories. Therefore, a certain degree
of interoperability with lemon would be useful. As with LMF, TBX contains much header
information and this can mostly be either discarded or mapped onto the descriptions
given in 4.7.2. The body of a TBX document consists primarily of a set of termEntrys
each of which is a concept, these roughly correspond to sense/reference pairs. The
conversion is trivial if there is a known ontology referenced by the term base (ideally
indicated by a ref tag), however if this is not the case either the id attribute of termEn-
try can be used as a URI or some invented URI should be used. Doing this effectively
raises the concepts expressed in the TBX document into a pseudo-ontology, so they
can be used with lemon. In TBX each termEntry is first split into languages and then
into terms, as such each langSet should be mapped to a lexicon in lemon. Finally, the
terms should be mapped to lexical entries with a given form. As TBX does not have
a simple method for indicating the standard form, either the forms should be guessed
from properties such as lemma, or all just marked with the general form.

53

Conclusion
lemon is a model that allows for lexica to be shared on the semantic web and provides
an efficient and simple representation. Nevertheless, the representation is capable of
presenting a very wide range of lexical information through both its own properties
and the easy integration of data categories from other sources. By incorporating other
semantic web standards lemon can gain many basic features for expressing meta-data
about the lexica and for describing constraints on the nature of the lexicon. lemon’s
innovative use of sense allows for lexical semantics to be represented in harmony with
more powerful semantic representation provided by ontology languages such as OWL.
Finally lemon maintains a high degree of interoperability with other standards, most
importantly SKOS and LMF.

Thanks
We would like to thank the following people for their contribution to the model and
discussion leading to its creation: Axel Pollers (DERI), Antoine Zimmermann (DERI),
Dimitra Anastasiou (CNGL), Susan Marie Thomas (SAP), Christina Unger (CITEC), Sue
Ellen Wright (Kent State University), Menzo Windhouwer (Universiteit van Amsterdam)

A FAQ
Q What is a form and what is a lexical entry? For example should initialisms be con-

sidered different forms?

A In general a form is considered to be “orthography-invariant”, that is that the form
should be a single entity across different orthographies ormedia. In contrast a lexi-
cal entry is “syntax-invariant”, this means that it should always become the same
entity once syntactic processing is complete. Initialism are clearly not “syntax-
invariant” (as they consist of a different number of words), so should be different
lexical entries.

Q Regarding the relations between lexical entries, if I understood it correctly, what are
formVariant and lexicalVariant?

A In general this follows from the question of what is a form and what is a lexical entry?

Q Regarding the relations to be established between Senses, I am not so sure of the
advantages in using the broarderSense and narrower relations compared to un-
derspecification of these relations? Does introducing such relations not duplicate
information already in an ontology?

A In fact the senses are quite underspecified, and the referenced ontology is intended
to contain the precise and rigorous semantics. The use of sense relations is in-
tended primarily for lexical processing using the lexicon.

Q Regarding the morphological information, is all this information needed for my ap-
plication? Do we really need so much detail?

A No, of course not. In fact the minimal lemon model needs use only forms and lexical
entries (and senses and references if referring to an ontology). But many applica-
tions may need something more than already exists in the model and lemon aims
to be extensible; we do not require that the entire model is always implemented!

Q I do not understand the sentence “Although lemon also includes features to assign
words to a pragmatic context, as this requires defining a pragmatic taxonomy it
may not be a wise idea for many applications”. What do you mean by a pragmatic
taxonomy? I personally believe that the pragmatic sense of the word is already
given by the word, but that we may want to make it explicit for practical reasons,

54

in order to be able to ask the ontology to give us the most appropriate vocabulary
for a certain context.

A In fact pragmatic context is really about the mapping, it is not even strictly necessary
if there is no mapping. There are also examples where the meaning of the word
is defined by its pragmatic context, for example “bitch” refers to a “female dog”
in veterinary context, but has a vulgar meaning in another context.

Q Regarding the ”three-faceted understanding of sense”, is this not too subtle to be
incorporated into the model?

A For many applications it may be, but for some applications a strong definition of
how the mappings correspond to implementations is useful. Much like any format
different levels of understanding can be used, i.e., RDF manages to be used quite
effectively in contexts where its extensional model semantics are not relevant.

Q Components are used to describe both word tokenization and term decomposition.
How should I represent “deutsches Schweineschnitzel”

A This should generally be represented by decomposing it first into “deutsch(es)” and
“Schweineschnitzel” and marking both of these as lemon:Words, then applying a
decomposition of “Schweineschnitzel” to “Schwein(e)” and “Schnitzel”.

Q Can a property of a lexical entry have multiple values? E.g., can I assign a lexical
entry to multiple subject fields?

A Sure, RDF also you to assert multiple triples with the same subject and property

Q Could I have a hierachical value for the property of a lexical entry?. E.g., if I say my
lexical entry is a proper noun, could I deduce it is also a noun?

A Limitations of RDF/OWL make this very difficult to do in general. There are three
solutions

1. Handle it yourself. Especially if you are referring to a lexicon standard in a
non-RDF format (e.g., ISOcat’s DCIF) then this may be the best approach

2. Use punning. OWL2 allows classes to be punned to individuals, this is suit-
able for some modelling (e.g., GOLD), but will not deduce the desired triples
automatically

3. Add OWL axioms to the description ontology. For example the above case
could be handled with

∃partOfSpeech.properNoun⊑∃partOfSpeech.noun

Q You use blank nodes frequently through out this document is this required in lemon?

A No. It just keeps the examples more readable

Q How do I represent how superlatives (e.g., “biggest”) map to an ontology

A Superlatives are difficult to represent well, as they clash with the open world seman-
tics inherent to OWL and RDF. In particular it is difficult to say what the greatest
element of a non-closed set would in fact be. You could of course map it to an
object property, whose range is some finite set (e.g., RDF’s List or an OWL enu-
meration), and then it could be mapped like a comparative.

Q As in multi-word expressions elements are inflected shouldn’t decomposition be by
forms not lexical entries?

A We have chosen to place it at the lexical entry level and use properties for sev-
eral reasons, but in particular that the decomposition should be the same for all
forms of the lexical entry. For example in the case of “number of employees” it is
clear that both that canonical form and the plural form “numbers of employees”
should have the same decomposition, even though they both use the inflected

55

form “employees.” Doing otherwise would require that the decomposition be re-
peated (potentially many times). Also it should be noted that this decomposition
is semantically disambiguated with “number” strictly in the sense of an amount
and not as a word or symbol. For general compactness and the ability to inter-
face with the phrase structure model we limit decomposition to the lexical entry
level and then assume that this decomposition can also be soundly applied at the
lexical and semantic level.

B LMF comparison
LMF lemon Notes
LexicalResource rdf:RDF Root element of RDF/XML document is

rdf:RDFGlobalInformation
Lexicon Lexicon
LexicalEntry LexicalEntry
Form LexicalForm
Representation representationFormRepresentation
TextRepresentation writtenRep
Definition definition
Statement no equivalent Use rdfs:comment on the definition
Lemma canonicalForm

See discussion in section 1WordForm otherForm
Stem ∼ abstractForm
RelatedForm formRelation
ListOfComponents ComponentList
Component Component
Equivalent equivalent
Context context
Subject Field topic
Syntactic Behaviour synBehavior
SubcategorizationFrame Frame
LexemeProperty no equivalent Generally should be modelled at the lexical

entry level
Subcategorization-
FrameSet not necessary Instead use the same argument entity with

multiple frames to model sets of frames
SynArgMap
SyntacticArgument synArg By using the same entity as both syntactic

and semantic argument the encoding in
lemon is more economical; see section ??

SemanticArgument semArg
SynSemArgMap not necessarySynSemCorrespondence
MonolingualExternalRef reference Plays a slightly different and significantly

more important role in lemon
Sense

LexicalSense
As predicates are assumed to exist the
ontology, they are not modelled in the
lexicon. Synsets given implicitly as the set of
senses that have the same reference

SenseAxis
TransferAxis
PredicativeRepresentation
SemanticPredicate
Synset
SenseRelation

senseRelation
PredicateRelation
SynsetRelation
SenseAxisRelation
TransferAxisRelation
SourceTest condition Condition on the sense instead of on the

transfer axis, as senses are more preciseTargetTest
InterlingualExternalRef no equivalent Can be modelled with dublincore:source
ArgumentRelation no equivalent It is not clear what argument relations exist
ContextAxis no equivalent Should be modelled with an ontology of

contexts, not in the lexiconContextAxisRelation
morphological pattern ex-
tensions

Replace by lemon morphology extensions,
section 2.5.

MWEPattern phraseRoot
MWENode Node
MWEEdge edge
MWELex leaf
constraint expression ex-
tensions

no equivalent Use OWL

C lemon model diagram

References
P. Cimiano, P. Buitelaar, J. McCrae, and M. Sintek. LexInfo: A Declarative Model for the
Lexicon-Ontology Interface. Web Semantics: Science, Services and Agents on the
World Wide Web, 9(1):29 – 51, 2011.

G. Francopoulo, M. George, N. Calzolari, M. Monachini, N. Bel, M. Pet, and C. Soria.
Lexical markup framework (LMF). In Proceedings of the Fifth International Conference
on Language Resource and Evaluation (LREC’O6), 2006.

A. Miles and S. Bechhofer. SKOS Simple Knowledge Organization System Reference,
2009. URL http://www.w3.org/TR/skos-reference/. Accessed 19 October 2010.

E. Montiel-Ponsoda, G. Aguado de Cea, A. Gómez-Pérez, and W. Peters. Modelling multi-
linguality in ontologies. In Proceedings of the 21st International Conference on Com-
putational Linguistics (COLING), 2008.

L. Romary. Standardization of the formal representation of lexical information for NLP.
In Dictionaries: An International Encyclopedia of Lexicography. Mouton de Gruyter,
2010.

http://www.w3.org/TR/skos-reference/

	The Trebuchet MSlemon core
	Main elements
	Canonical forms and preferred lexicalizations

	Modules
	Linguistic Description Module
	Linguistic properties
	Describing phonetics
	Topics and contexts

	Variation Module
	Lexicosemantic relationships
	Lexical variants
	Subphrases as variation
	Form variants
	Translation as variation

	Phrase Structure Module
	Decomposition of terms
	Phrase structures
	Dependency relations
	Noun phrase chunks

	Syntax and Mapping Module
	Frames
	Phrase structure and frames
	Predicate mapping
	Conditions
	Mapping to more complex representations
	Mapping adjectives
	Correspondence

	Morphology Module
	Inflection
	Agglutination

	Advanced Issues
	Annotations and Global Restrictions
	Annotation schemes
	Global Information

	The semantics of the Trebuchet MSlemon model
	Formal model of Trebuchet MSlemon senses

	Relation to existing systems
	LMF
	SKOS
	TBX

	FAQ
	LMF comparison
	Trebuchet MSlemon model diagram

